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ABSTRACT
When agents need to interact in order to solve some (possi-
bly common) problem, resolving potential conflicts before-
hand is often preferred to coordination during execution.
Agents may lose some flexibility, but their course of action
will be more predictable and often also more efficient, ob-
taining a socially optimal outcome instead of a local opti-
mum. One way to resolve conflicts beforehand is to give ex-
tra constraints to each of the agents such that when they all
meet these constraints, the resulting execution is conflict-
free. A set of constraints that meets this requirement is
called a decoupling of the original problem; if it also max-
imizes the social welfare (i.e. the sum of the valuations of
all the agents), it is called optimal. Representing interesting
multiagent problems as a constraint problem, we show that
finding an optimal decoupling is at least as hard as find-
ing a solution for the constraint problem. We therefore fo-
cus on a constraint problem that is efficiently solvable, but
still very relevant and interesting in the context of multi-
ple agents executing their actions, i.e. the Simple Temporal
Problem (STP). Two more technical results, then, are that
we resolve the open question whether finding an optimal de-
coupling of the STP is NP-hard (it is), and if all agents have
linear valuation functions, this decoupling problem can be
solved efficiently.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; F.2 [Analysis of Algorithms and Problem Com-
plexity]

General Terms
Algorithms, Theory

Keywords
Optimal Decoupling, Temporal Decoupling Problem

1. INTRODUCTION
In multiagent systems, a number of autonomous agents

perform activities to solve some (possibly common) prob-
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lem. There are usually many interdependencies between
these activities, for example caused by shared goals, scarce
resources, or consumer–producer relations. Consequently,
these activities have to be coordinated in order to ensure
a correct solution. In principle, such coordination can be
achieved by solving all agents’ problems together as one mul-
tiagent problem, completely coordinating all their activities
in the process. We feel that this is counter to the idea of
autonomy and privacy of the agents, thereby removing all
flexibility, and is thus a useful approach only in rare cases.
The other extreme is to coordinate during execution. For
example, semaphores (e.g. traffic lights) can be used to pre-
vent agents from using the same resource at the same time;
alternatively, agents can wait for other agents to complete
activities they depend upon. Such real-time coordination al-
lows for last-moment changes and thereby offers the agents a
significant amount of flexibility. Often, however, the process
is more efficient (obtaining a social optimum instead of a lo-
cal optimum) and results are more predictable when (most
of the) coordination is performed before execution; more-
over, communication during execution may be prohibitively
expensive or simply impossible.

In this paper, we therefore propose to model the problem
of coordinating the activities of agents beforehand by finding
a decoupling [12, 13]. The idea behind such a decoupling is
rather simple: additional constraints ensure that individual
parts can be solved independently, and all combinations of
(local) solutions to these parts can be merged to constitute
a (global) solution of the original multiagent problem.

Example 1. Suppose that Alice and Bob plan a joint meet-
ing. Alice is able to attend the meeting from 14:00 till 16:00
and she will stay for 45 minutes. Bob has time from 13:00
till 16:00, but he will stay for only 30 minutes. They need
at least 10 minutes to talk to each other. Clearly, if Alice
plans to attend the meeting from 15:15 till 16:00 and Bob
chooses to attend from 13:00 till 13:30, they will not have
the possibility to talk to each other. If, however, we en-
force both parties to choose an arrival time between 15.00
and 16.00, they will have enough opportunity to meet. This
constraint effectively decouples the overall problem into two
separate subproblems in such a way that whatever schedule
Alice chooses and whatever schedule Bob chooses, if they
meet their own constraints, the meeting objective is satis-
fied.

Since a decoupling introduces new constraints, the set
of solutions of the original system might be reduced. One
commonly used objective is then to choose among alterna-
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tive decouplings the one that minimizes the loss of flexibil-
ity (to choose alternative local solutions) introduced by the
additional constraints. For example, Fitoussi and Tennen-
holtz [9] study how to obtain minimal social laws, which
define a set of forbidden strategies such that no strategy can
be removed without losing usefulness (i.e. any combination
of the allowed strategies is a global solution). In this paper
we generalize this notion of (local) optimality by optimizing
the valuation of the agents for the chosen decoupling. Such
a valuation can express other preferences than those on flex-
ibility as well. For example, Bob may prefer an early time
and Alice a later time. We then study the problem of finding
a decoupling that is as good as possible for all agents. To be
precise, we optimize the sum of the valuations of the agents
for the chosen decoupling, i.e. the utilitarian social welfare.

In this paper, we use general constraint systems to rep-
resent many interesting multiagent problems, be they dis-
tributed constraint satisfaction, task/resource allocation, or
scheduling problems. We show that finding an arbitrary de-
coupling is as hard as finding a solution for a constraint sys-
tem. This implies that finding a decoupling in general is an
NP-hard problem. Therefore, finding an optimal decoupling
must be at least as hard, making it very unlikely to have an
algorithm that always finds an optimal solution efficiently.
We then concentrate on constraint systems where optimal
solutions can be found in polynomial time. In addition, in
the context of self-interested agents optimal solutions are
important for a second reason; if optimality cannot be guar-
anteed, agents may want to lie about their valuations, thus
changing the objective [17]. Therefore, concentrating on
constraint systems where finding a solution is tractable, we
study the Simple Temporal Problem (STP). STPs occur as
a subproblem of many interesting multiagent problems and
some work has already been done on decoupling of STP by
Hunsberger [13]. However, whether an optimal decoupling
of STP can be found efficiently was still an open problem.
We show that for general valuation functions finding an op-
timal decoupling is NP-hard, while for linear functions this
can be done in polynomial time.

2. BACKGROUND
A constraint system is a general representation for a large

class of combinatorial real-life problems. Constraint systems
have been used to represent and solve planning and schedul-
ing problems, resource allocation problems and design and
configuration problems [3]. The basic ingredients of a con-
straint system S are a set C of constraints over a set X of
variables xi each taking values in some finite domain Di. A
constraint system S is solved if we find values for each of
the variables such that all the constraints are satisfied. If
constraint systems are used to represent and solve problems
in multiagent systems, each agent Ai has its own disjoint set
Xi ⊆ X of variables to assign values to. The (common) task
of the agents is then to find suitable values to the variables
such that all constraints are satisfied.

We would like to respect the agents’ privacy, autonomy,
and flexibility by allowing them to solve their subproblem
completely independently from the others. We are therefore
interested in decoupling techniques for constraint systems.
Such a decoupling ensures that the local solutions deter-
mined by each of the agents can always be merged to yield
a solution to the complete system.

Although in constraint systems decomposition is a com-

mon technique to split a problem in a number of parts in
such a way that the global solution can be efficiently as-
sembled from the solutions of the parts [10, 16, 22], this
approach differs from the decoupling approach mentioned
above. Firstly, in the decomposition approach the structure
of the problem (i.e. the set of constraints) dictates the way in
which the subproblems are generated (for example by guar-
anteeing that the subproblems are acyclic [5]), while in the
decoupling approach the subproblems are dictated by the
given partitioning of the variables due to the agents’ span
of control. Secondly, in the decomposition approach, the
subproblems generated are usually not independently solv-
able, because the subproblems do not need to be completely
disjoint. Before we state this decoupling problem in a more
precise way, we first introduce some notational conventions.

3. PRELIMINARIES
In this section we formally define constraint systems, dis-

tributed constraint systems, and decoupling of distributed
constraint systems. Then, in the next section, we show that
finding a decoupling is as hard as solving a constraint prob-
lem.

A constraint system S = 〈X, D, C〉 where X is a (finite)
set of variables, D is a set of (value) domains Di for every
variable xi ∈ X and C is a set of constraints on X. We
assume constraints c ∈ C to be specified as formulas over
some language.1 A solution s of the system is an assignment
s = {xi ← di}n

i=1 to all variables in X such that each c ∈ C
is satisfied. The set of such solutions s is denoted by Sol(S).

The system S is called consistent if Sol(S) �= ∅. We as-
sume the set of solutions Sol(S) to be anti-monotonic in
the set of constraints; that is, if S = 〈X, D, C〉 and S ′ =
〈X, D, C′〉 are such that C ⊆ C′, then Sol(S ′) ⊆ Sol(S).
For every c ∈ C, let Var(c) denote the set of variables men-
tioned in c. Given a set of constraints C and a set of variables
X ′, we let CX′ denote the subset {c ∈ C | Var(c) ⊆ X ′}.

In this paper we consider constraint systems S that are
distributed [24]; that is, there is a set of agents Ai, each
being able to make assignments or add relations to a subset
Xi of the variables. More specifically, the collection {Xi}N

i=1

constitutes a partitioning of X, i.e.
SN

i=1 Xi = X, while for
1 ≤ i < j ≤ N , Xi ∩ Xj = ∅. Given such a partitioning
{Xi}N

i=1, Si = 〈Xi, DXi , CXi〉 is the subsystem that has to
be solved by agent Ai, where DXi is the set of domains for
the variables in Xi, and CXi is as defined above.

We are interested in those distributed constraint systems
where each agent Ai is able to find an (arbitrary) solution
si for the subsystem Si = 〈Xi, DXi , CXi〉 controlled by Ai

in such a way that the simple merging s = s1 � s2 � . . . �
sN of these individual solutions always is a solution of the
original system S. If a distributed constraint system S =
〈{Xi}N

i=1, D, C〉 satisfies this property, we say that S is a
decoupled constraint system.

Usually, distributed constraint systems do not satisfy this
decoupling property. However, a decoupled version can be
obtained by adding extra constraints. In particular, a dis-
tributed constraint system S ′ = 〈{Xi}N

i=1, D, C′〉 is a decou-
pling of a distributed constraint system S = 〈{Xi}N

i=1, D, C〉
if (i) C ⊆ C′ and (ii) S ′ = 〈{Xi}N

i=1, D, C′〉 is a decou-

1To preserve generality, we don’t feel the need to specify the
set of allowable operators used in the constraints c ∈ C and
their interpretation.
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pled constraint system. Notice that, by anti-monotonicity
of Sol(S) in C, it follows that every solution of S ′ is also a
solution of S.

4. DECOUPLING AND SOLVING A CON-
STRAINT SYSTEM

One of the basic problems in decoupling is how to find a
decoupling of a given distributed constraint system. It has
been argued that for general constraint systems, finding a
decoupled version of a distributed constraint system is in-
tractable [23]: more in particular, that finding a decoupling
for a distributed variant of a constraint system S is as hard
as finding a solution to S. Here, we present a more detailed
and complete version of this result.

Proposition 1. Let C be an arbitrary class of constraint
systems allowing at least equality constraints. Then there
exists a polynomial algorithm to find a solution for con-
straint systems in C if and only if there exists a polyno-
mial algorithm that, given a constraint system S ∈ C and
an arbitrary partition {Xi}N

i=1 of X, finds a decoupling of
S = 〈{Xi}N

i=1, D, C〉.
Proof. Suppose that there exists a polynomial algorithm

A to find a solution for constraint systems in C. We show
how to construct a polynomial algorithm for finding a de-
coupling for an arbitrary partition of such a constraint sys-
tem. Let S ∈ C be a constraint system and {Xi}N

i=1 an
arbitrary partitioning of X. To obtain a decoupling S ′′ =
({Xi}N

i=1, D, C′) of S ′ = ({Xi}N
i=1, D, C), first, using A,

we compute a solution s of S. For every Xi, let Csi =
{x = d | x ← d ∈ s, x ∈ Xi} be a set of unary con-
straints for variables in Xi directly obtained from s. Then
the decoupled subsystems (Xi, Di, C

′
i) of S ′′ are simply ob-

tained by setting Di = DXi and C′
i = CXi ∪Csi . Note that

each of these subsystems (Xi, Di, C
′
i) has a unique solution

si = {x ← d ∈ s | x ∈ Xi} and the merging of these so-
lutions si equals s, i.e. a solution to the original system S.
Therefore S ′′ is a decoupling for S that can be obtained in
polynomial time.

Conversely, suppose we can find a decoupling S ′′= ({Xi}N
i=1,

D, C′) for any distributed version S ′ = ({Xi}N
i=1, D, C) of

a constraint system S = 〈X, D, C〉 ∈ C in polynomial time.
We show how to obtain a solution s of S in polynomial time.
Since the decoupling S ′′ can be obtained for any partitioning
of X, we choose the partitioning {Xi}N

i=1 where Xi = {xi}
for i = 1, 2, . . . , N . Since the decoupling S ′′ = ({Xi}N

i=1,
D, C′) has been obtained in polynomial time, it follows that
|C′| is polynomially bounded in the size of the input S ′.
Hence, the resulting decoupled subsystems S ′′

{xi} of S ′′ each
consist of a polynomially bounded set of unary constraints.
It is well known that such constraint systems are solvable in
polynomial time [2]. Therefore, in polynomial time for each
subsystem S ′′

{xi} an arbitrary value di ∈ D{xi} for xi can
be obtained, satisfying all constraints. Let si = {xi ← di}
denote the solution obtained for S ′′

{xi}. Since S ′′ is a decou-
pled system, the merging s = s1 � s2 � . . . � sN must be a
solution of S ′′ as well. Therefore, s is a solution of S, too.
Hence, given a polynomial algorithm for decoupling, we can
compose a solution s ∈ Sol(S) in polynomial time.

It is well-known that for general constraint systems, find-
ing a solution is NP-hard [3]. Therefore, finding a decom-
position, even a trivial one, is exactly as hard. Therefore,

whatever notion of optimality we would like to introduce
for decoupling, finding an optimal decoupling must be as
hard. In [23] it has been shown that using various notions of
optimality, finding an optimal decoupling is sometimes even
essentially harder (under the usual complexity assumptions)
than finding an arbitrary one.

Since we are especially interested in finding (optimal) de-
couplings in an efficient way, the results stated above force
us to look at subclasses of constraint systems that can be
solved efficiently. We therefore concentrate on an interesting
tractable class of constraint systems: the Simple Temporal
Problem.

5. SIMPLE TEMPORAL PROBLEM
The Simple Temporal Problem (STP) is about finding out

whether there exists a solution for a special type of con-
straint system S = 〈X, D, C〉. Here, each xi ∈ X is a
temporal variable, taking values in some temporal domain
(usually the set of real numbers), and C consists of linear
constraints of the form ci→j : xj −xi ≤ wi→j , where wi→j is
some real constant. Since the domains for all the variables
are the same (a fixed temporal domain), we usually assume
D to be known and define an instance of the STP S as a
tuple 〈X, C〉. Unary constraints xi ∈ [ai, bi] with ai, bi ∈ D
are usually represented in the STP with the help of an ad-
ditional special time point z, called the temporal reference
point. This variable indicates some fixed point in time and
always takes the value 0 in a solution. Each unary constraint
then takes the form of a pair of constraints cxi→z and cz→xi

where wxi→z = −ai and wz→xi = bi.
Henceforth, we also use the term Simple Temporal Net-

work (STN) to refer to instances of the STP. The problem
of finding out whether there exists a solution to an STN,
and if so, to find a solution for such an STN can be solved
efficiently [4]. The solution to an STN can be viewed as a
schedule for some set of constrained activities as specified in
the STN.

To introduce a distributed version of an STP, assume that
we have agents 1 through N , who want to solve (or execute)
a Simple Temporal Problem (STP) S = 〈X, C〉 together.
The time-point variables X \{z} are partitioned into N sub-
sets X1, . . . , XN , such that for i �= j : Xi∩Xj = {z}; that is,
the intersection of each pair of subsets always contains just
the special time-point variable z. Such a partition is called
a z-partition. Every agent i is given control over all time-
point variables in Xi with the exception of z, which is always
taken to be 0. Given such a distributed STP, the Tempo-
ral Decoupling (TD) problem, informally speaking, is to add
new constraints C′ to S, guaranteeing that each agent i can
execute the part of the STP instance restricted to its subset
of time-point variables Xi, i.e. Si = 〈Xi, (C ∪ C′)Xi

〉 inde-
pendently of the other agents without the risk of running
into inconsistency. Note that Proposition 1 is applicable2

to the STP; thus, the TD problem, like the STP itself, is
tractable.

Hunsberger [13] was the first to study Temporal Decou-
pling. By introducing the notion of flexibility in STPs he was
able to define an optimization variant of the TD problem: an
optimal TD is a decoupling of a constraint system preserv-

2An (implicit) equality constraint xi = ci can be obtained by
combining two unary constraints with weights wz→xi = ci

and wxi→z = −ci.
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Figure 1: The three chemical processes, depicted in
an STN

ing maximal flexibility. Roughly, Hunsberger considered a
decoupling S ′ as a maximal flexibility preserving decoupling
of a distributed constraint system S if there does not exist
an alternative decoupling S ′′ for S where (i) all constraints
of S ′′ are at least as tight as the constraints in S ′ and (ii)
at least one constraint is less tight than the corresponding
constraint in S ′. Hunsberger was able to find a polynomial
algorithm for obtaining such a (locally) maximal flexibility
preserving decoupling.

Instead of flexibility, one could easily choose other objec-
tives for a decoupling to be optimized. Therefore, Huns-
berger defined a general notion of the optimization variant
of the decoupling problem by using a general metric h as the
specification of the objective function to be optimized. Here,
the only requirement for h is to be a real-valued function that
takes an STN S and a decoupling S ′ for S as input. Huns-
berger has not addressed the complexity of finding globally
optimal decouplings using such a given metric h. In the next
section, we show that for general metrics h this problem is
NP-hard. Then, we address the problem of specifying spe-
cial metrics h such that the optimal decoupling problem can
be solved efficiently. We conclude this section with an elab-
orate example of both STP and Temporal Decoupling. In
later sections, we build upon this example to demonstrate
our results on Optimal Temporal Decoupling and to illus-
trate the use of mechanism design in the context of rational
agents with private information.

Example 2. Three processes in the chemical industry are
controlled by separate agents A, B, and C. Apart from the
main marketable product, each of these processes produces
some by-products that are of no immediate use to the agent
and have little market value. However, it so happens that
these three processes mutually benefit from each other’s by-
products. The agents have decided to work in synergy and
run their processes in tight cooperation. Without this syn-
ergy, each by-product would have to be disposed of by its
producing agent as little more than waste. The consuming
agent, for his part, would have to buy it at some cost domi-
nated by secondary components like shipping and handling,
and therefore much higher than its intrinsic low value.

The process is pictorially represented in Figure 2. In this
figure, each of the vertices labelled ai indicates the end of

a1 [8:00,8:00]

a2 [8:25,8:25]

a3 [8:57,8:57]

b1 [8:37,8:42]

b2 [8:47,8:47]

b3 [8:55,8:55]

c1 [8:05,8:20]

c2 [8:25,8:45]

c3 [9:05,9:15]

[25,25]

[32,32]

[5,10]

[8,8]

[20,40]

[20,40]

Figure 2: A possible decoupling of the example STN

a phase in the process of agent A (similarly for B and C).
Furthermore, each of the industries starts at some time be-
tween 7:00 and 11:00 AM, denoted by the arc from z; this
temporal reference point is taken to stand for the beginning
of the day, at midnight. The arc between a1 and a2 labelled
with an interval of [20, 25] indicates that the end of phase a2

must occur at least 20 minutes and at most 25 minutes after
the end a1; the remaining arcs can be interpreted likewise.

It is of utmost importance that this global plan be ad-
hered to. Violation of any of the constraints may mean that
substances can no longer be used because they have expired,
resulting certainly in large extra costs, but possibly also in
damage to equipment. To ensure global consistency, a pos-
sibility would be for each agent to relinquish control to a
central authority which then runs all three of the processes.
However, each agent would rather retain control of its own
process. As we have seen before, this means that we have
to find a decoupling: a set of additional local constraints for
each agent that, given compliance with the local constraints,
guarantees consistency of the global problem instance. Once
such a decoupling has been found, inter-agent constraints
can be ignored.

A possible decoupling of our example problem is given in
Figure 2. To avoid clutter, we have omitted z and the arcs
between it and the remaining vertices in this representation;
the labels of the omitted arcs are instead placed alongside
each of the vertices. The reader can verify that this is indeed
a decoupling of the original network; any solution of this
network is also a solution to the original problem instance.

Note that many other decouplings exist, and agents may
strongly prefer one decoupling to another. In particular,
agent A is none too happy with the decoupling as presented,
as we shall soon see. We model agents’ preferences over de-
couplings with valuations. Agent A prefers to start early,
and values each minute that a1 takes place before 11:00 AM
at $0.10. It also desires as short a time span as possible be-
tween a1 and a2, because with delay, the intermediate prod-
uct loses malleability; each minute earlier is worth as much
as $100, with a maximum of $500 for the minimum delay.
Agent B, in contrast, wants the time span between b2 and b3

to be as long as possible, because this product becomes eas-
ier to handle with a longer delay. Each minute longer than
the minimum wait time of 8 minutes is valued at $15. Fi-
nally, all agents value flexibility in their constraints. This
is measured by the total size of the intervals labelling arcs
between z and each of the phases of an agent’s process; for
simplicity, we assume that these flexibilities are uniformly
valued. For agent A, flexibility is worth $0.50 per minute;
for agent B, $2 per minute; and for agent C (who doesn’t
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care about start or end times), $10 per minute. It can then
be verified that decoupling as presented in Figure 2 is valued
at $12, $10 and $450 by agents A, B, and C, respectively.

The decoupling in the example above is just one possible
decoupling, which happens to be very good only for agent C.
A natural question to ask here is whether it is possible to find
a socially optimal decoupling that is as good as possible for
all agents. This is exactly the topic of the next two sections.

6. OPTIMAL TEMPORAL DECOUPLING
Hunsberger phrases Optimal Temporal Decoupling (OTD)

as an optimization problem that maximizes some metric h.
This metric takes as input the original and decoupled STNs
and gives a measure of this decoupling’s “preferredness”.
This may be any function, but a good example would be
a combination of the agents’ local preferences on their part
of the STP, e.g. the valuations as stated in Example 2. To
establish the complexity, we state the decision variant, using
a threshold of at least α preferredness for the metric h. Like
Hunsberger, we consider here the case N = 2; our result
then extends to the general case.

Definition 1. Let S = 〈X, C〉 be an STP instance, where
X is z-partitioned in X1 and X2. Further, let h be a tem-
poral decoupling metric as defined by Hunsberger and let
α ∈ R be a constant. Then, the optimal temporal de-

coupling problem is to decide whether there exists a de-
coupling (S1,S2) of S such that h(S,S1,S2) ≥ α.

The following result solves an open problem as mentioned
by Hunsberger [13]:

Theorem 2. optimal temporal decoupling is NP-hard.

In the proof of Theorem 2, we use a (linear) reduction
from vertex cover.

Let I = 〈G = 〈V, E〉, K〉 be a instance of vertex cover,
where |V | = n and vertices are denoted by the natural num-
bers {1, . . . , n}. Define the following OTD instance R(I):

X1 = {z} ∪ {x2i−1 | i ∈ V }
X2 = {z} ∪ {x2i | i ∈ V }
C = {x2i − x2i−1 ∈ [0, 1] | i ∈ V }

∪ {z − x2i−1 ∈ [0, 1] | i ∈ V }
∪ {x2i − z ∈ [0, 1] | i ∈ V }

To decouple this instance, we are looking for sets of con-
straints C1, C2, ranging over the time-point variables X1, X2

respectively. Now, we define the metric h over a n-dimensional
vector w, where each element wi takes a value c for (z −
x2i−1 ≤ c) ∈ C1. Note that to induce a valid decoupling, all
wi must be in [0, 1]. Setting the optimality bound α = n−K,
we define the metric as follows:

h(w) =
X
i∈V

wi − n2
X
i∈V

wi(1 − wi) − n
X

{i,j}∈E

wiwj (1)

The idea of the reduction is that wi = 0 if and only if vi is
in the vertex cover.

Proof of Theorem 2. Let V ′ ⊆ V be a vertex cover of
G with |V ′| = K. We set C2 = {x2i − z = 0 | i ∈ V } so
that each element wi of w can be set to any value in [0, 1]
to induce a valid decoupling. For each i ∈ V , set wi = 0

if i ∈ V ′, wi = 1 otherwise. Since V ′ is a vertex cover, it
holds for all edges {i, j} ∈ E that i ∈ V ′ ∨ j ∈ V ′, and
thus wi = 0 ∨ wj = 0. Then, the following holds for the
summations constituting h:X

i∈V

wi = n − K

X
i∈V

wi(1 − wi) = 0

X
{i,j}∈E

wiwj = 0

So h(w1, . . . , wn) = n − K = α.
Before showing the converse, let us first examine the met-

ric h a little closer, w.l.o.g. taking the partial derivative
∂w1h:

∂w1h(w) = 1 − n2(1 − 2w1) − n
X

{1,j}∈E

wj

For n > 1, it can be seen that ∂w1h(0, . . . , wn) < 0; also, not-
ing that

P
{1,j}∈E wj < n, it follows that ∂w1h(1, . . . , wn) >

0. Since this argument can be repeated for all dimensions
of w, and h is a smooth function, we conclude that it has
a minimum in the interior and its value is highest along the
edges where the variables take values from {0, 1}.

Now, let w be a vector for which h(w) ≥ n − K. By the
preceding discussion, any element of w with 0 < wi < 1 can
be replaced by a value ŵi ∈ {0, 1} to produce a {0, 1}-valued
vector ŵ with h(ŵ) > h(w). This implies that the second
term of Equation 1 is zero. The last term of Equation 1
must also be zero; otherwise, h(ŵ) ≤ 0 < n − K (assuming
the nontrivial case that K < n).

From ŵ, we can now construct a set of vertices V ′ = {i ∈
V | ŵi = 0}. Because the last term of Equation 1 is zero, we
know that V ′ is a vertex cover, and from

P
i∈V ŵi ≥ n−K,

we have that |V ′| ≤ K.

We have thus shown that even for only two agents and
quadratic temporal decoupling metrics, solving OTD is in-
tractable. In the next section, we show that if we limit the
allowable metrics, we can efficiently solve OTD regardless of
the number of agents.

7. SOLVING OTD EFFICIENTLY
Hunsberger [13] relegates the efficient solution of OTD to

future research. We now show that for suitable metrics h,
OTD can be solved in polynomial time, following a linear
programming (LP) approach. As we shall see, the variable
vector in our LP formulation represents an STP instance,
and the linear inequalities it is subjected to are chosen such
that the set of feasible solutions coincides with the set of all
possible decouplings of some STP instance.

Let S = 〈X, C〉 be the STP instance under scrutiny; fur-
thermore, let N be the set of agents and let {Xi}i∈N be a
z-partition of X, and let h be the decoupling metric. As

variable vector for our LP instance, we use p ∈ RX2
. This

vector can be interpreted as an STP instance S ′ = 〈X, C′〉
with C′ = {cx→y : y − x ≤ pxy | (x, y) ∈ X2}. Now, we
present four sets of linear inequalities on p.

Triangle inequality (tri)

∀(v, w, x) ∈ X3 : pvx ≤ pvw + pwx
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Consistency (con)

∀x ∈ X : pxx = 0

These two sets of inequalities are based on properties of
the STN as described by Dechter et al. [4, p. 72].

Lemma 3. If p satisfies tri, then S ′ is a minimal STN.

Proof. Note that the Floyd–Warshall algorithm can be
used for establishing minimality:

for k ← 1 to n do
∀i, j ∈ {1, . . . , n} : dij ← min{dij , dik + dkj}

Here, the values dij are initialised to the original weights wi→j

and thus correspond directly to the values in p. From tri,
it then follows easily that no updates are made by the algo-
rithm.

Lemma 4. If p additionally satisfies con, then S ′ is con-
sistent.

Proof. This corresponds exactly to the procedure of“ex-
amining the sign of the diagonal elements” as stated by
Dechter et al. [4, p. 72].

The vector p can now be seen as a unique representation of
all STP instances equivalent to S ′ [4, p. 67]. Conversely, for
any possible minimal STN, there exists a vector p satisfying
both tri and con that describes it; thus, these inequalities
establish a bijection between the set of minimal STNs and
the set of vectors p.

Original constraints (ori)

∀cx→y ∈ C : pxy ≤ wx→y

Decoupling (dec)

∀cx→y ∈ C such that x ∈ Xi ∧ y ∈ Xj ∧ i �= j :
pxz + pzy ≤ wx→y

ori requires that all constraints in S ′ are, in the parlance
of Dechter et al. [4, p. 72], tighter (in the weak sense) than
those in S. Hence, S ′ ⊆ S, meaning that any solution to S ′

must also be a solution to S.
Then, all these constraints together satisfy exactly the

necessary and sufficient conditions of temporal decouplings
as stated by Hunsberger [13, Thms. 5.10 and 5.12]. We thus
have that S ′ is a decoupling of S.

Now, Hunsberger’s temporal decoupling metric h can be
used as the objective function of this linear program. We
then have the following result from the discussion in this
section:

Theorem 5. If h can be expressed as a linear function
over p, then the OTD problem can be solved in polynomial
time.

Without going into details, we wish to mention here that
this theorem offers some room for extension. First, note that
some additional variables and inequalities may be added to
the linear program to widen the scope of considered metrics;
this opens the way for criteria like“min max”, among others.
Furthermore, tractability is not sacrificed by allowing h to be
a quadratic function expressible with a positive semidefinite
matrix. This means in particular that in showing that OTD
is NP-hard for general quadratic metrics (Theorem 2), we
have established the bounds of tractability quite narrowly.

a1 [7:00,7:00]

a2 [7:20,7:20]

a3 [7:52,7:52]

b1 [7:32,7:37]

b2 [7:42,7:42]

b3 [7:50,7:50]

c1 [7:05,7:20]

c2 [7:25,7:40]

c3 [8:00,8:10]

[20,20]

[32,32]

[5,10]

[8,8]

[20,35]

[20,35]

Figure 3: The optimal decoupling of the exam-
ple STN

The valuation functions of the agents in Example 2 are
all linear. This thus allows us to find an optimal decoupling
of the STN given in that example in polynomial time using
the LP translation given in this section.

Example 3. Translating the example on the agents con-
trolling chemical processes (Example 2), we obtain an LP
formulation with a 100-dimensional variable vector p and a
constraint matrix containing 1000 tri inequalities, 10 con

inequalities, 26 ori inequalities, and 9 dec inequalities. Note
that some of these numbers are lower than expected at first
glance; this is because we omit trivial inequalities featuring
infinity.

The optimal solution to this problem (see Figure 3) has
a total value of $934 (which is, obviously, better than the
decoupling in Figure 2 with total worth $475), i.e. $524 for
agent A, $10 for agent B and $400 for agent C.

8. A MECHANISM FOR DECOUPLING
As we have shown above (see e.g. Example 2), in most

settings many alternative decouplings are possible. An ex-
treme example of a decoupling is when everything is fixed in
advance, i.e. the constraints allow for only one solution. In
other decouplings, some of the agents may not receive any
additional constraints. However, this usually comes at the
expense of other agents, which are then very restricted in
their autonomy. Each agent usually has its own valuation
for these alternatives. Sometimes, the values of the possible
choices are private to the agents. Solving problems where es-
sential information is private to self-interested agents creates
the difficulty that some of these agents may try to manipu-
late the report of their private information in order to arrive
at a solution that has more value to them. Therefore, we
now show how to apply some known results from mechanism
design to deal with this issue of manipulation in the context
of decoupling. We refer the reader to e.g. [19] for a detailed
exposition of the mechanism design concepts used below.

In this work, we focus on a so-called direct mechanism
where we ask each player i to report a valuation function
vi that assigns a value to each possible decoupling. The
set of all possible reports is called the set of strategies. If
the dominant strategy for every player is to submit their
correct valuation function, we say the mechanism is incentive
compatible. Clearly, this is a desirable property when we are
interested in optimizing the social welfare.

Let us now extend our model of OTD to include the play-
ers’ valuation functions. We propose a valuation function
vi for each player i that takes as input the decoupled STP
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instance, and as output some value in R. We assume that vi

is constant in all constraint weights which are not contained
inside Si. This is the (commonly used) no-externalities as-
sumption; we assume here that no agent cares about the con-
straints in some other agent’s subnetwork. In addition to the
valuation, we allow a player’s utility to also depend on some
payment, i.e. ui({Sk}N

k=1) = vi({Sk}N
k=1) − pi({Sk}N

k=1).
When such payments are possible, this opens the way for
the ubiquitous class of Groves mechanisms [11], which is the
main successful class of mechanisms that optimize social wel-
fare while satisfying incentive compatibility.

A Groves mechanism for OTD selects the optimal de-
coupling based on the declared valuations as the outcome.
The payment, then, is given by pi({Sk}N

k=1) = hi(v−i) −P
j �=i vj({Sk}N

k=1), where hi can be any function that does
not depend on vi. A common choice for hi is the so-called
Clarke tax [1], which in general is maxS′

P
j �=i vj({S ′

k}N
k=1).

The Clarke tax can be interpreted as the marginal cost of
an agent, and is computed by considering the same setting
without taking the valuation of agent i into account. The re-
sulting mechanism is known to be efficient (i.e., maximizes
the social welfare) and incentive compatible (in dominant
strategies), see e.g. [19] for the proofs.

We illustrate such a mechanism by elaborating upon our
example set in the chemical industry (Examples 2 and 3).

Example 4. A Groves mechanism chooses the optimal out-
come, so in this respect nothing changes from the result
given in Example 3. However, in the previous example we
simply assumed that we knew the valuations of all agents.
By applying payments, a Groves mechanism makes the truth-
ful declaration of these valuation functions to a centre incen-
tive compatible. In case of the Clarke tax, such payments
can be computed efficiently using the same linear program,
but with a different objective, leading to the following pay-
ments in this case.

pA = 475 − 410 = 65
pB = 929 − 924 = 5
pC = 601.5 − 534 = 67.5

9. DISCUSSION AND RELATED WORK
The single most important difficulty added by multiagent

systems is the coordination of self-interested agents. This
coordination problem has been defined as managing depen-
dencies and occurs in many more situations than just in
multiagent systems; see e.g. [14] for an interdisciplinary sur-
vey. Considering its omnipresence in multiagent systems,
the problem of analyzing this general coordination problem
theoretically has received relatively little attention. Admit-
tedly, there are many protocols and algorithms for coor-
dination in specific settings, both on-line and off-line, but
regarding a general model and analysis of the general coor-
dination problem we have found only some work on social
laws by Shoham and Tennenholtz et al. [9, 20, 21] and more
recently work by Witteveen et al. [23]. It seems that social
laws are not necessarily problem instance specific, while de-
couplings usually are, but nonetheless, technically these two
concepts are essentially the same. Our work differs from
all of the above mainly in that we study the decoupling
problem in the context of multiple agents, generalizing the
commonly used objective of (locally) maximizing flexibility
to maximizing the social welfare. In addition, we show how
to apply theory on VCG-based mechanisms to use our re-

sults in the context of self-interested rational agents that
have private information. In contrast to social laws, such a
chosen decoupling then does not need to be enforced upon
these agents.

As an alternative to finding a socially optimal decoupling
before execution, a number of techniques have been pro-
posed to coordinate during execution, such as (Generalized)
Partial Global Planning [6, 7, 8]. Some of these methods
may be computationally more efficient than decoupling; in
general, however, they only find locally optimal solutions
because of the lack of look-ahead when making coordination
decisions. Moreover, once a decoupling has been found, no
more coordination (i.e., computational effort and commu-
nication) is required at all during execution. Thus, when
taking only the execution phase into account, decoupling is
more efficient than on-line methods; furthermore, one can
envisage settings in which communication during execution
is prohibitively expensive or simply impossible, making de-
coupling the only viable option. On the other hand, an ad-
vantage of on-line coordination approaches is that they may
be able to deal with unforeseen changes more easily. As part
of our future work, therefore, we will consider mixed forms
based on both decoupling as well as on-line coordination.

Nisan and Ronen [17] show that sub-optimal truthful VCG-
based mechanisms for cost minimization problems can lead
to arbitrarily bad solutions. Their result also applies to op-
timal decoupling. This underlines the importance of finding
optimal solutions when designing VCG-based mechanisms
that are truthful. This aim for optimality led us to the fol-
lowing contributions, presented in this paper.

First, we have proved that finding decouplings for arbi-
trary distributed constraint systems is as hard as solving
the constraint system centrally. From this, it immediately
follows that optimal decoupling is at least as hard, and that
if we aim for efficient algorithms for optimal decoupling,
we should concentrate our attention on problems that are
efficiently solvable. In this paper we therefore focused on
the Simple Temporal Problem (STP), which is known to be
tractable. We then solved the open problem put forward by
Hunsberger regarding the complexity of finding an Optimal
Temporal Decoupling (OTD) for the STP [13]. Surprisingly,
OTD was shown to be intractable even for some quadratic
objectives, but, fortunately, we were able to show that OTD
is efficiently solvable when the objectives are linear, obtain-
ing a socially optimal decoupling instead of a local optimum
such as found by Hunsberger’s algorithm. Finally, we have
illustrated how an optimal algorithm for decoupling can be
combined with known results from mechanism design, ob-
taining a mechanism that resolves coordination conflicts for
rational, self-interested agents.

We believe that the mechanism design view on solving co-
ordination problems between self-interested agents put for-
ward in this paper can be an inspiration to continue work
on social laws and decoupling. In particular, we expect sig-
nificant contributions by studying other special cases like
OTD that are polynomially solvable. Additionally, we leave
for future work the study of decoupling for multiagent prob-
lems that are even harder than constraint satisfaction, such
as e.g. multiagent planning, including nontemporal or mixed
problem settings. In general, we cannot expect to be able
to optimally decouple such intractable problems. This thus
encourages us to consider recent work on for example second-
chance or maximal-in-its-range mechanisms [17] to be able to
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use approximation algorithms in the context of self-interested
agents. In addition, in this work we assumed that coordi-
nation during execution is valued lower than any possible
decoupling that can be obtained before execution and that
agents therefore always meet the constraints posed by a de-
coupling. However, this cannot always be guaranteed, and
especially when agents’ valuations may depend on activities
of other agents, this requires a two-stage mechanism [15, 18].
Taking such execution incentives into account will make our
results on optimal decoupling applicable to an even wider
range of domains.
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